Cryogenic (<20 K) helium cooling mitigates radiation damage to protein crystals.

نویسندگان

  • Unmesh Chinte
  • Binal Shah
  • Yu Sheng Chen
  • A Alan Pinkerton
  • Constance A Schall
  • B Leif Hanson
چکیده

In experiments conducted at the Bio-CARS beamline 14-BM-C (APS, Argonne National Laboratory, USA), Streptomyces rubiginosus D-xylose isomerase (EC 5.3.1.5) crystals were used to test the effect of cryogen temperature on radiation damage. Crystals cooled using a helium cryostat at an 8 K set temperature consistently showed less decay in the signal-to-noise ratio, I/sigma(I), and in average intensity, I, compared with those cooled with a nitrogen cryostat set to 100 K. Multiple crystals grown using ammonium sulfate as precipitant were used at each cryostat set temperature and comparisons were made for crystals of similar size and diffraction resolution. Maximum resolution for the crystals was 1.1-1.3 A, with He at <20 K extending the lifetime of the high-resolution data by >25% compared with crystals cooled with N(2) at 100 K.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Macromolecular cryocrystallography--methods for cooling and mounting protein crystals at cryogenic temperatures.

Cryocrystallography is routinely used in macromolecular crystallography laboratories. The main advantage of X-ray diffraction data collection near 100K is that crystals display much less radiation damage than seen at room temperature. Techniques and tools are described to facilitate cryoprotecting and flash-cooling crystals for data collection.

متن کامل

High-pressure cooling of protein crystals without cryoprotectants.

Flash-cooling of protein crystals is the best known method to effectively mitigate radiation damage in macromolecular crystallography. To prevent physical damage to crystals upon cooling, suitable cryoprotectants must usually be found, a process that is time-consuming and in some cases unsuccessful. A method is described to cool protein crystals in high-pressure helium gas without the need for ...

متن کامل

Application of a Helium-Cooled Cryo-Electron Microscope for Single Particle Analysis

Cryo-electron microscopy (cryo-EM) is a powerful tool in structural biology for a broad range of targets and resolutions. Electron crystallography can yield maps with better than 2 Å resolution from two-dimensional (2D) crystals of membrane proteins [1]. Tubular crystals of membrane proteins are grown during the 2D crystallization trials of membrane proteins, and helical reconstruction can prov...

متن کامل

Cryocrystallography of ribosomal particles.

Crystals suitable for X-ray study have been prepared from biochemically active ribosome particles or their complexes with tRNA and polypeptide chains. At ambient temperature the useful lifetime of these crystals under synchrotron irradiation is limited to a few minutes. However, upon cooling to cryogenic temperatures around 85 K, the original resolution limit (up to 4.5 A) can be recorded and r...

متن کامل

Practical macromolecular cryocrystallography

Cryocrystallography is an indispensable technique that is routinely used for single-crystal X-ray diffraction data collection at temperatures near 100 K, where radiation damage is mitigated. Modern procedures and tools to cryoprotect and rapidly cool macromolecular crystals with a significant solvent fraction to below the glass-transition phase of water are reviewed. Reagents and methods to hel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta crystallographica. Section D, Biological crystallography

دوره 63 Pt 4  شماره 

صفحات  -

تاریخ انتشار 2007